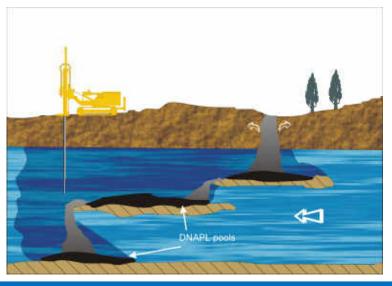


Rajandrea Sethi

TECNICHE AD ALTA RISOLUZIONE PER LA CARATTERIZZAZIONE DI ACQUIFERI CONTAMINATI


Geofisica e geognostica per la bonifica ambientale – XVIII Workshop di Geofisica Rovereto, 2 dicembre 2022

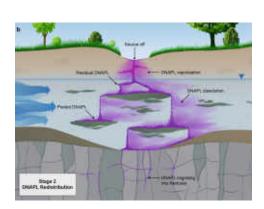
1

The Invisible...

2022

Politecnico di Torino – Groundwater Engineering

3


Caratterizzazione e bonifica di sistemi acquiferi

Campo di moto -> Caratterizzazione idrodinamica

- Tipologia idraulica
- Coefficiente di immagazzinamento
- Gradiente
- Distribuzione della conducibilità idraulica K
- Altri parametri.

Inquinamento -> Caratterizzazione della contaminazione

- Distribuzione e della C dei contaminanti accumulati:
 - liquida
 - solida (adsorbiti)
 - segregata (LNAPL, DNAPL)

Distribuzione spaziale di K e C

2022

olitecnico di Torino – Groundwater Engineerir

Δ

Approcci classici

A. Conducibilità idraulica:

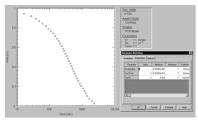
- Prove di falda e slug test
- Correlazione con la litologia
- Analisi in laboratorio (granulometrie, permeametro)
- Approcci geofisici (anche innovativi)

B. Concentrazione

- Piezometri e pozzi completi
- Piezometri multilivello
- Approcci geofisici (anche innovativi)

2022

Politecnico di Torino – Groundwater Engineering


5

GW/

Verso HRSC: direct push + slug test

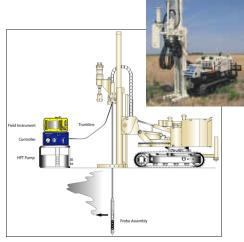
Avanzamento per infissione mediante matello oleodinamico (es. Geoprobe)

Slug test pneumatico all'interno delle aste di strumentazione ad infissione diretta (Geoprobe) per determinazione quantitativa di K lungo la verticale.

Aqtesolv

https://geoprobe.com/videos/geoprobe-pneumatic-slug-test

2022 Politecnico di Torino – Groundwater Engineeri


ST pneumatico

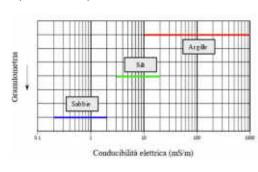
Sonde ambientali + direct push

- Strumentazione di superfice (controller, sistema di acquisizione e rilevatori)
- Sensori:
 - Conducibilità idraulica:
 - EC: electrical conductivity (Geoprobe)
 - HPT: hydraulic profiling tool (Geoprobe)
 - Concentrazione (contaminanti):
 - MIP: membrane interface probe (Geoprobe)
 - LIF: laser induced fluorescence (Dakota)
 - OIP: optical image profiler (Geoprobe)

Infissione diretta: avanzamento a percussione tramite martello oleodinamico (52 kN - 160 kN)

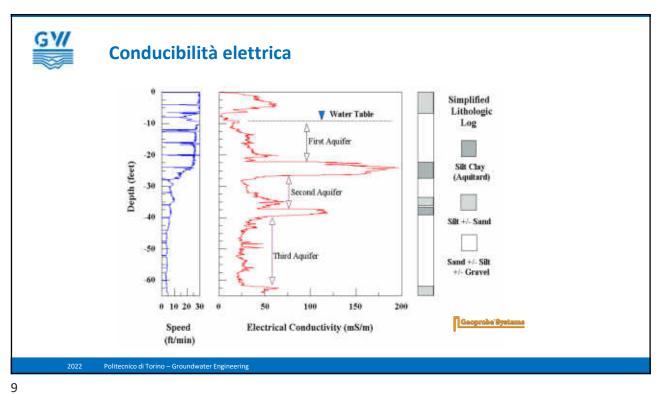
202

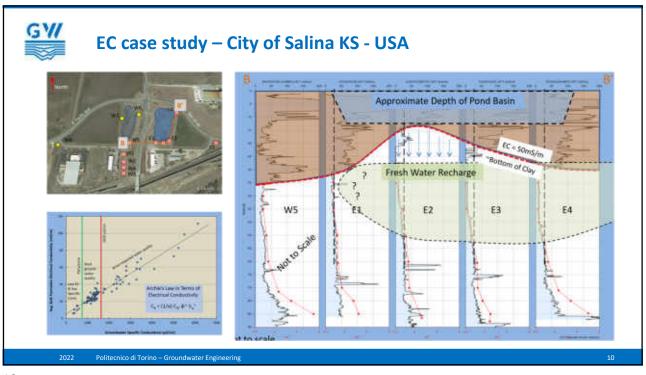
Politecnico di Torino – Groundwater Engineering


7

Conducibilità elettrica

Dipolo o quadrupolo per la misura DIRETTA della conducibilità elettrica del terreno e correlazione con la litologia (e poi con la K idraulica)


Frequenza di acquisizione 5 Hz



Dipola EC

Geoprobe System

022 Politecnico di Torino – Groundwater Engineeri

Conducibilità idraulica (HPT Tool)

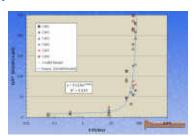
Hydraulic Profiling Tool Legge di Darcy: Q=K i A Portate assegnata 0-1 I/min Pressioni 0-6 atm

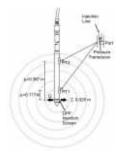
2022

Politecnico di Torino – Groundwater Engineering

11

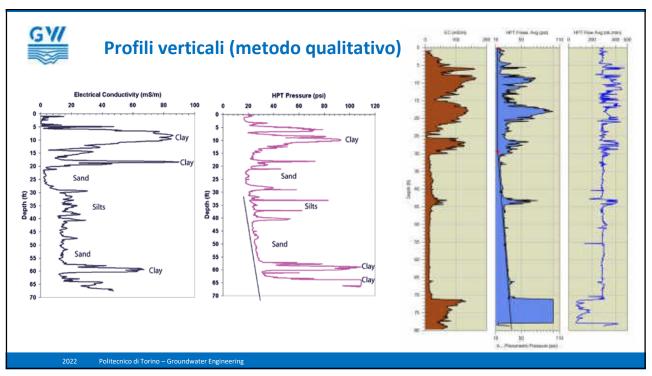
Metodi di interpretazione semi- o quantitativi

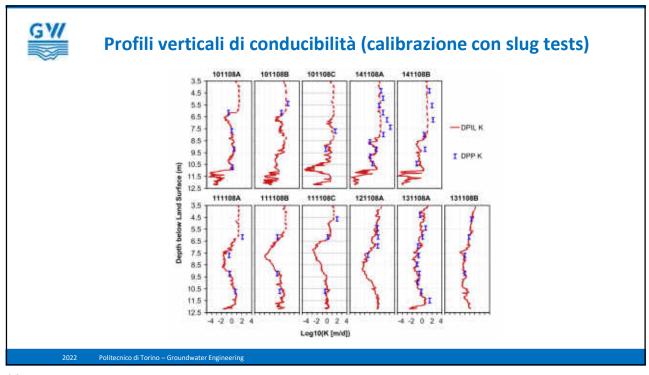

2 approcci:


1. Misura della pressione e della portata di iniezione nella stessa porta

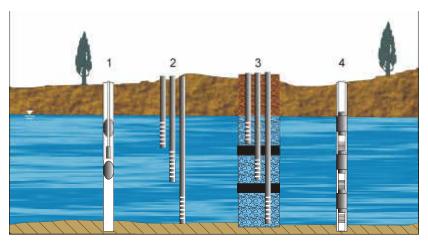
$$\log K = a + b \log \left(\frac{Q}{p}\right)$$

2. Iniezione e misura delle pressioni in porte distinte, secondo la legge di Darcy in geometria sferica:


$$K = \frac{Q\left(\frac{1}{r_1} - \frac{1}{r_2}\right)}{4\pi \ \Delta h}$$



2022


Politecnico di Torino – Groundwater Engineerin

B: Contaminazione: campionamento lungo la verticale

Sistemi di campionamento multilivello:
1) packer doppio, 2) cluster in perfori separati, 3) cluster in un singolo perforo, 4) sistemi multilivello.

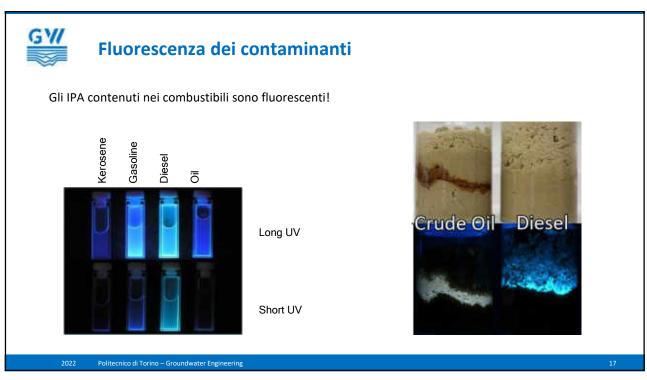
Politecnico di Torino – Groundwater Engineering

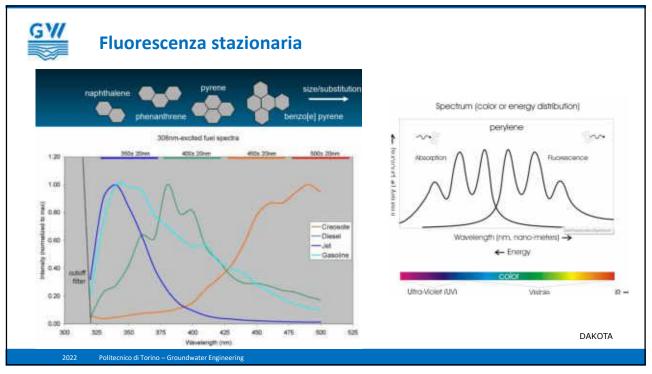
15

Campionamento lungo la verticale: CMT Solinst

Tubazione flessibile:

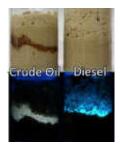
- del diametro esterno di 1.7" suddivisa in 7 canali interni a nido d'ape
- diametro esterno di 1.1" suddivisa in 3 canali (per sistemi GEOPROBE)

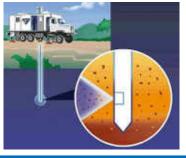

Packer per isolare i vari livelli


Questo sistema è spesso utilizzato all'interno di perfori realizzati con sistemi ad infissione diretta

2022

Politecnico di Torino – Groundwater Engineerin



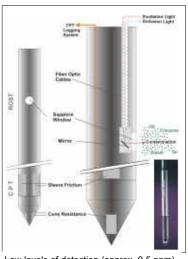


Laser induced fluorescence (LIF)

Sensore ad infissione diretta

Fluorescenza indotta da raggio laser che raggiunge il sottosuolo attraverso una fibra ottica posta all'interno delle aste. La risposta del NAPL (composti aromatici) è trasportata in superficie da una seconda fibra ottica e lo spettro misurato da un rivelatore in superficie

2022


Politecnico di Torino – Groundwater Engineering

1

19

Laser Induced Fluorescence (LIF)

- Low levels of detection (approx. 0.5 ppm)
- Contaminant identity via spectroscopy

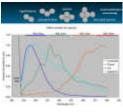
- Semi-quantitative detection of hydrocarbons (fuels, crude oil and tar) in saturated/unsaturated
- Waveform product identification

TarGOST™

(Tar-Specific Green Optical Screening Tool)

Green laser especially and solely designed for Tar DNAPL (Coal Tar, Creosote etc.)

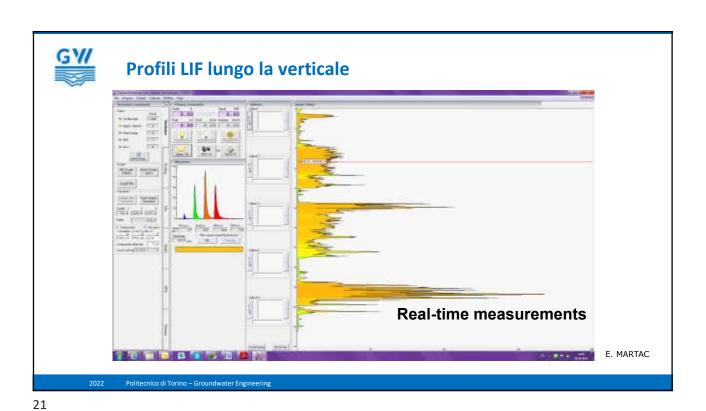
ROST™ (CPT) (Rapid Optical Screening Tool)


Nd-YAG-Laser/Dye-Laser Excitation 290 nm

Excitation 290 nm Emission Wavelengths 340 - 390 - 440 - 490 nm

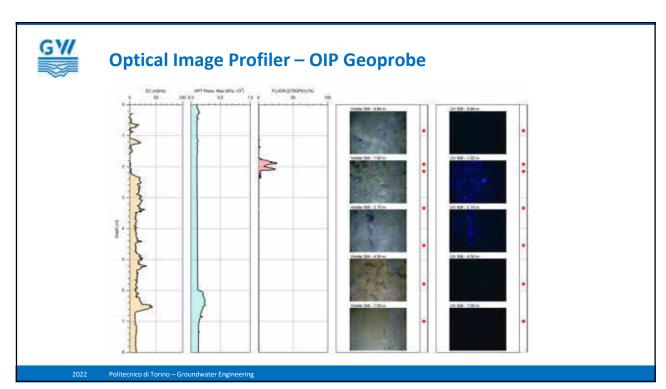
UVOST™ (CPT/DP)

UltraViolet Optical Screening Tool)


Excimer Laser
Excitation 308 nm
Emission Wavelengths
350 - 400 - 450 - 500 nm

E. MARTAC

2022


Politecnico di Torino – Groundwater Engineerin

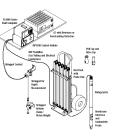
Optical Image Profiler – OIP Geoprobe

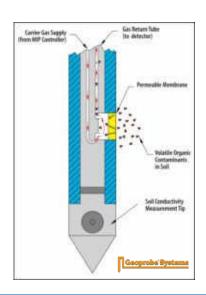
Camera (30 fps) + visible & UV (275 nm) led light sources
Detects PAHs contained in LNAPLs
OIP-G(reen): 520 nm for heavier products

https://geoprobe.com/videos/di-viewer-reviewing-oihpt-log

Membrane Interface Probe (MIP)

Volatilizzazione dei VOC grazie alla temperatura della membrana (80-125 °C)

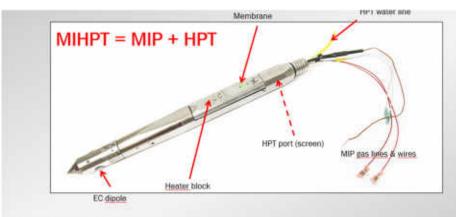

Adsorbimento sulla membrana


Diffusione molecolare fino a raggiungere il gas di trasporto

Il contaminante si muove nelle tubazioni alla velocità di circa 1 m/s

Sensibilità:

- 0.1-1 ppm standard MIP
- 0.01-0.1 ppm LL MIP


2022

Politecnico di Torino – Groundwater Engineering

25

MiHPT – Membrane Interface Hydraulic Profiling Tool

MIP : for the detection of Volatile Organic Compounds (VOCs)

HPT : for the estimation of permeability (Est. K) in the saturated zones

2022

Politecnico di Torino – Groundwater Engineerin

Detectors

FID (Flame Ionization Detector):

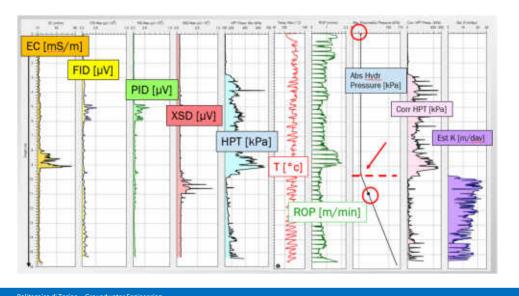
- general detector (flame)
- • excellent for light HC (C₁ − C₉ in MIP configuration)
- far less sensitive than other detectors to most VOCIs
- good for HC (ethenes, BTEX ..)
- needs H₂ and Air (1:10)

PID (Photo Ionization Detector):

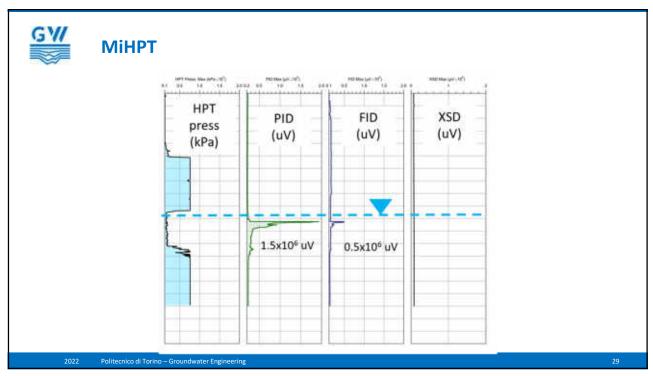
- UV Vis lamp (10.6eV 121 nm)
- sensitive to compounds with IP < 10.6 eV
- → excellent for aromatics (BTEX ..)
- \rightarrow good for lots of unsaturated HC (including VOCIs)
- needs carrier gas (MIP is enough)

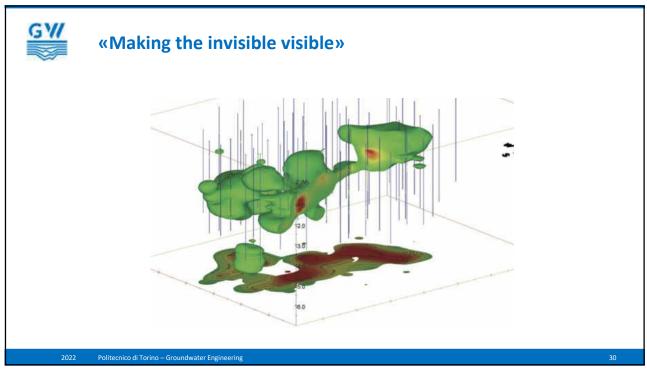
XSD (Halogen-Specific Detector):

- low baseline noise
- very stable
- very good sensitivity to VOCs
- Selective
- needs +/- 20ml/min of AIR
- best alternative to ECD & DELCD detectors


	Contaminates	Detection Limit*	Carrier Gases
PID	BTEX	1 ppm	Nitrogen, Helium, Compressed Air
FID	Methane, Butane	N/A	Nitrogen, Helium, Compressed Air
ECD	Chlorinateds (TCE, PCE)	250 ppb	Nitrogen, 95% Argon, 5% Methane
XSD	Chlorinateds (TCE, PCE)	1 ppm	Nitrogen, Helium, Compressed Air
DELCD	Chlorinateds (TCE, PCE)	1 ppm	Nitrogen, Helium, Compressed Air

2022 Politecnico di Torino – Groundwater Engineering


27



MiHPT Log

28

«Making the invisible visible»

ps://sketchfab.com/3d-models/mihpt-survey-xsd-response-with-estimated-k-fea01beeb4364b59ae20a6fc2884a720

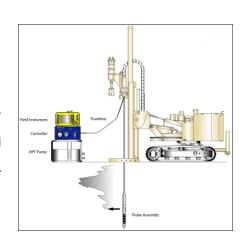
2022 Politecnico di Torino – Groundwater Engineering

31

31

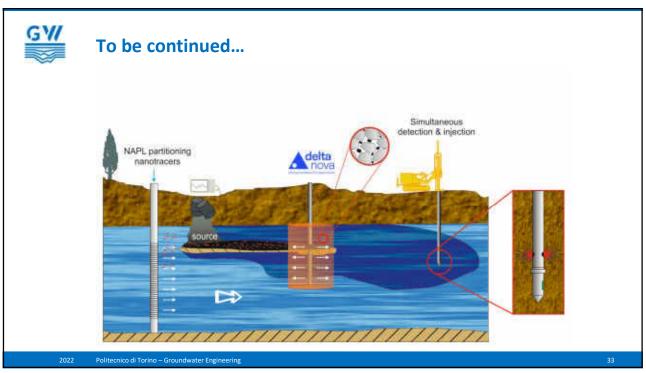
Conclusioni

Vantaggi:


- Analisi in tempo reale e continua
- Nessuna manipolazione del campione
- Nessuna generazione di rifiuti

Le tecniche ad alta risoluzione spaziale consentono di:

- determinare l'eterogeneità di EC e di conducibilità idraulica;
- ricostruire accuratamente la distribuzione spaziale dei contaminanti


e pertanto permettono di:

- quantificare masse e flussi di contaminanti
- ottimizzare gli interventi di bonifica e ridurne i costi.

2022

Politecnico di Torino – Groundwater Engineerin

